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Investigation of the behaviour of a column beyond the elastic limit
by methods of the technical theory of stability�
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Abstract

The behaviour of a model column on a deformable base acted upon by compressive and lateral loads beyond the elastic limit
is investigated using the methods of the technical theory of stability. The loading trajectory which leads to the greatest deflection
is constructed for specified constraints on the absolute magnitude of the lateral load and a monotonic increase in the compressive
load, and the possibility of the occurrence of a limiting state is investigated.
© 2006 Elsevier Ltd. All rights reserved.

There are two approaches, the Karman approach1 and the Shanley approach,2 for describing the stability of a
compressed column beyond the elastic limit, which lead to different values of the critical loads, called the reduced
modulus load and the tangent modulus load respectively. In the case of a rectilinear column, the essence of these
approaches is as follows: the condition for the occurrence of other equilibrium states, differing from the rectilinear
equilibrium state in the case of a constant compressive force, serves as the criterion which leads to the first type
of critical load, while the condition for the possibility of the occurrence of distortion when the compressive load is
increased serves as the criterion leading to the second type of critical load.

The idea of investigating the roles of each of these critical loads without the direct use of the concept of stability,
proposed for the first time by A. A. Il’yushin and V. A. Lomakin, rests on a concept of the technical theory of stability
and is as follows. The magnitude of the change in the compressive load and the maximum value of the transverse
perturbations acting on a given column can be estimated under real conditions, and the greatest possible deflection of
the column can be estimated on the basis of this. For instance, a column under the action of a compressive load P and
a lateral perturbing load N is said to be stable in the sense of technical stability if, for any loading processes P(t), N(t)
(t is a loading parameter) for which 0 < P(t) ≤ Pm, |N(t)| ≤ N0(Pm and N0 are known quantities), the greatest possible
deflection does not exceed a specified value �.

One of the techniques for investigating the problem of technical stability involves the construction of the extremal
loading trajectory, in which the column attains the greatest deflection, and its subsequent investigation. Note that the
determination of the maximum deflection in the above-mentioned formulation is not only of theoretical interest but
also of practical interest in the case of a real structure. Extremal trajectories have been constructed previously3 in
the case of a model Shanley column and an idealized I-beam. The maximum lateral load is initially applied on the
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trajectory for these models and the compressive force is then increased up to the maximum value. In the geometrically
linear formulation, it is found that the magnitude of the maximum deflection is finite as long as the compressive load
is less than the reduced modulus load and tends to infinity as the compressive load tends to the reduced modulus load.
However, the results obtained for a model column cannot be transferred to the real analogue due to the fact that there
is no central layer in the case of the model column. The process of the removal of the lateral load from it with its
subsequent application is therefore described in the majority of cases by an elastic law which leads to the loss of the
plastic effect of the accumulation of deflection.

A model of a column on the deformable layer is considered; it is similar to that proposed by Klyushnikov,4 which
takes account of the effect of the plastic accumulation of deflections.

Note that, in this case, the corresponding criteria for loss of stability are obtained4 under the assumption that the
compressive load exceeds the plastic load, that is, a cross-section of the column is found to be in a plastic state at the
instant of loss of stability. The method of elastoplastic conditioning5,6 enables one to increase the plastic load up to a
value which exceeds the reduced modulus load. However, when account is taken of the effect of the lateral perturbing
load, a limiting state is possible for which there are no quasistatic equilibrium states when certain loading process
parameters are increased.

It is assumed that the maximum value of the non-decreasing compressive load exceeds the reduced modulus load
but is less than the corresponding plastic load. The problem of finding the greatest deflection is solved and the question
concerning the possibility of reaching a limiting state is also investigated under the assumption that the maximum
value of the lateral load is known. With reference to the properties of the column material, the hypothesis of linear
hardening with elastic unloading is adopted without taking account of the effect of secondary plastic deformations.

For convenience in writing out the relations between the stresses and strains, we will introduce the concept of
minimum strain

The equation relating � and e then has the form

(1)

where E is Young’s modulus, E1 is the modulus of strain hardening, e is the strain, em are the minimum strains and �s

is the elastic limit (the direction of elastic unloading is shown by the arrow in Fig. 1).
A sketch of the model column is shown in Fig. 2. The following notation is used: 2l is the length of the column

(OO1 = O′O′
1 = l), � is the angle of inclination, 2h, 2s, b are the initial dimensions of the deformable layer ABB1A1,

2h = AB is the width of the layer, 2s is the initial height and b is the size of the layer in a direction perpendicular to the
plane of the diagram.

Fig. 1.
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Fig. 2.

Taking account of expression (1), we can write the equations for the equilibrium of the column on the deformable
layer in the geometrically linear formulation in the form

(2)

where �E = E − E1, e(z) and em(z) are the distribution of the strains and the minimum strains in a cross-section of the
column (the origin of the z axis is located at the centre of the deformable layer).

According to the hypothesis of plane sections, we have

(3)

In the case of non-decreasing P, we obtain from Eq. (2) that e(0) is a non-increasing function of the loading parameter.
It follows from condition (3) that e(z) is a convex function of z (note that one can put em(z) = −�s at the initial instant).

We will now formulate the criterion for a limiting state of the column. In the model being considered, the critical
forces are: the Euler force Pl, the reduced modulus force Pk, and the tangent modulus force Pt which are respectively
equal to4
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Fig. 3.

In the most general case, there are three zones in the cross-section of a column (Fig. 3): (1) −h < z < h2, where
em(z) < e(z); (2) h2 < z < h, where em(z) = e(z); (3) h1 < z < h, where em(z) < e(z). In the case of the first and third zones,
the relation between the stress increments and the strain increments is determined by the elastic law, and, in the case
of the second zone, it depends on the direction in which the strain changes. To formulate the criteria of the limiting
state, we introduce the function

Note that ∂G/∂h1 ≤ 0, ∂G/∂h2 ≥ 0.
The criteria for a limiting state are formulated in Assertions 1–3 presented below (a scheme for their proof was

presented earlier in Ref. 7).
Assertion 1. If G(h1, h2) − Pl > 0, then any sufficiently small quasistatic continuations of the loading process �P(t),

�N(t) are possible.
Assertion 2. If

where h± ∈ [h2, h1] is a root of the corresponding equation ±4hh±E − (h± − hi)2�E = 0 (i = 1 in the case when h+ and
i = 2 in the case when h−), then any sufficiently small continuations of the loading process �P(t), �N(t) are possible.

Assertion 3. If G(x, h2) − Pl < 0, where x = h+ and if h+ ∈ [h2, h1] and x = h1 otherwise, then quasistatic equilibrium
states exist which are characterized by an unlimited increase in the deflection of the column in the case of a constant
compressive force and a non-increasing lateral force.

Assertions 1–3 have a simple mechanical meaning: if quasistatic equilibrium states exist in the case of a simple
increase in the lateral load and the deflection becomes larger at the same time, then any sufficiently small continuations
of the loading process are possible.

Two cases are considered for constructing the extremal loading trajectory and finding the maximum deflection.
The case when G(0, −h) − Pml < 0 (sufficiently large values of the compressive force). Here, Pm is the largest

possible value of the compressive force. Then,

Suppose Pm = G(y, −h)/l, y ∈ (−h, 0). We shall show that the extremal deflection is attained by applying the maximum
lateral load Nm to a column which is compressed by a force Pm. Suppose �m is the corresponding angle of inclination.
For sufficiently large values of Nm, we have the following distribution of the minimum strains em(z) (the dashed line
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Fig. 4.

in Fig. 4)

(4)

Using the equilibrium Eqs. (2) and (4), we obtain the following system of equations for determining �m and h1 as
functions of Nm for a specified value of Pm

(5)

where

From the condition h1 > −h, we obtain that plastic deformation occurs when

The system of Eq. (5) can be considered as a parametric representation (parameter h1) of �m and Nm.
Since

where

we have

Assertion 4. If Nml = �Psf(h1, Pm), h1 ∈ [−h, y), then, for any loading processes P(t), N(t) from the class being
considered, the angle of inclination of the column �(t) satisfies the condition

Proof. Consider the class of loading processes P(t), N(t) which satisfies the conditions
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We will show by reductio ad absurdum that �(t) < �m. Suppose a t = t1 is found such that P1 = P(t1) ≤ Pm,
N1 = N(t1) < Nm, �(t1) = �m and, at the same time, �(�) < �m, � ∈ [0, t1]. Now, suppose that, when t = t1, the distri-
bution of the minimum strains throughout the cross-section of the column is specified by the function em(z, t1) = em1(z).
We denote the distribution of the minimum strains, defined by formulae (4), by em0(z). �

Two versions are possible.
Version 1. em1(z, h1) = −�s (curve 1 in Fig. 4). Then,

We put

Note that sign�em(z) = signz.
From Eq. (2), we have

Since �P ≥ 0, �N > 0, I(−h, h) > 0, we have obtained a contradiction.
Version 2. em1(z, h1) < −� (curve 2 in Fig. 4).
We denote the difference in the strains at the point z = 0 by �e = e0(0) − e1(0). Note that �em(z) = �e when z ∈ [−h,

h1] and �em(z) is a concave function in the interval [h1, h], which increases in the interval [0, h].
From the first equation of system (2), we have

(6)

From relation (6), it follows that

(7)

It is easy to show that �em(z) ≤ �e when z ∈ [h1, 0]. Then,

Since �em(z) is a concave function and �em(0) ≤ �e, it then follows from relation (7) that I(0, h) ≥ �eh2/2. Then,
from the second equation of system (2), we obtain

On transforming this equation taking account of the estimates which have been obtained, we have

A contradiction has been obtained since �P ≥ 0, �N > 0.
Letting Nm1 tend to Nm, we arrive at the conclusion that, for any loading trajectory from the class being considered,

�(t) ≤ �m and, consequently, by virtue of symmetry, �(t) ≤ �m.
Assertion 5. If Nml = �Psf(h1, Pm), where h1 ∈ [−h, y), the attainment of a limiting state for any loading processes

from the class being considered is impossible.
The proof of this assertion follows from Assertion 3, since an unlimited increase in the angle of inclination is

possible in the case of a reduction in the lateral load.
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The case G(0, −h) − Pml > 0. Suppose

Assertion 6. Suppose Nml = �Psg(h1, Pm), where

Then, the angle of inclination of the column � does not exceed �m for any loading trajectory.
Assertion 7. The magnitude �m of the angle of inclination of the column is the exact upper limit of the possible

deflections, that is, loading trajectories exist which lead to an angle of inclination which is as close as desired to �m.
Assertion 8. If Nml = �Psg(h1, Pm), h1 ∈ [0, y), then the attainment of a limiting state for any loading trajectory from

the class being considered is impossible. If Nml > �Psg(y, Pm), then the attainment of a limiting state is possible.
We shall omit the proofs of Assertions 6–8.
Conclusions. In the case when the plastic load exceeds the critical Karman force, a limiting state can be attained

which is characterized by the absence of quasistatic continuations of the loading process as the load is increased.
For sufficiently large compressive stresses, the maximum deflection is attained by applying a lateral load to the

compressed column. A minimum value of the limiting lateral load is attained in the same loading trajectory.
At smaller values of the compressive load, but values which exceed the critical Karman force, the greatest deflection

is attained under two sets of conditions: for a sufficiently small value of the lateral load, the maximum deflection is
attained by applying a lateral load to the compressed column and, at high values of the lateral load, the mode of loading
of a compressed column, in which the lateral load repeatedly changes sign according to a special law and accumulation
of deflection occurs, corresponds to the maximum deflection.

An analogous loading trajectory brings the column into the limiting state for the minimum value of the lateral load.
This research was supported financially by the Ministry of Education of the Russian Federation within the framework

of the “Integration” programme.
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